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Abstract. We derive, using the quaternionic group representation theory, the possible forms
of the t-violating Hamiltonians, and consider time evolution in a two-level system when a t-
violating term is added to a t-preserving unperturbed Hamiltonian. Transition probabilities are
calculated; moreover, the time evolution of a complex state is determined analytically, showing
that a quaternionic component arises naturally in its evolution. Finally, some properties of the
time-reversal observable are studied and a set of selection rules is obtained.

1. Introduction

In quaternion quantum mechanics (QQM) quaternionic Hilbert space dynamics underlies
observational physics; then, in this context, a very relevant point concerns the possibility
of a direct experimental test for quaternionic effects.

The first proposal for tests of QQM was by Peres [1], who suggested looking for residual
quaternionic effect by passing a neutron beam through slabs of two different materials, and
searching to see whether the phase shifts depend on the order of the slabs. A deeper analysis
of such an experiment [2] shows that in one-dimensional scattering in complex quantum
mechanics (CQM) (if one considers real potentials) the left and right transmission amplitudes
are equal, whereas, in general, in QQM their magnitudes are always equal and, for a system
with time-reversal symmetry, they must also be equal in phase, so a non-vanishing phase (when
the order of the slabs is reversed) is a time-reversal violating effect [3].

Experiments to detect a phase shift are thus equivalent to experiments to detect time-
reversal violation.

Actually, scattering theory in QQM provides a natural mechanism for the generation of
time-reversal violation (i.e. without resorting to extra assumptions, but just taking into account
the genuinely quaternionic terms in the potential) and it leads among other things to a t-
violating effective CQM describing the scattering of asymptotic states [3]. Of course, it must
be stressed that QQM does not simply reduce itself to CQM plus a time-reversal violation.

In this paper we intend to approach the problem of time-reversal violation in QQM by
means of group theory techniques. More precisely, given a (finite or compact) symmetry
groupGwhich includes the time-reversal symmetry t (the representations ofGwere explicitly
drawn out and studied elsewhere by the authors [4]), we can determine the possible forms of a
quaternionic (anti-Hermitian) Hamiltonian H of a physical system which is invariant through
G, and then add to them the most general quaternionic potential Vt which admits the same
geometrical symmetries as H , but is t-violating.
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To this aim, we briefly recall in section 2 some previous results on the quaternionic
irreducible representations (Q-irreps) and their classification; then, we reconsider in section 3
the representations of G and deduce in section 4 the possible forms of H and Vt , while
in section 5 an analogous discussion is carried out for the complete symmetry group of a
relativistic, massive physical system.

Thus, in section 6, the knowledge of the full Hamiltonian H̃ is used to study the oscillations
of an eigenvector of the unperturbed Hamiltonian H ; in particular, we derive explicitly (and
without any resort to perturbative or approximate techniques) the transition probabilities and
the time evolution of a complex superposition of eigenvectors ofH , showing that a quaternionic
component naturally comes out.

In section 7 the oscillations of an eigenvector of Vt (and hence, of t) are studied.
Finally, since in the realm of QQM an observable can always be associated with the

time-reversal operator t , we devote section 8 to illustrating some of its properties, and, in
particular, a set of selection rules are obtained, which are associated with the parity under time
reversal.

2. Basic notation and tools

We recall here some basic notation and previous results.
A quaternion is usually expressed as

q = q0 + q1i + q2j + q3k

where qi ∈ R (i = 0, 1, 2, 3), i2 = j2 = k2 = −1, ij = −ji = k.
The quaternion skew-field Q is an associative algebra of rank 4 over R, non-commutative

and endowed with an involutory anti-automorphism (conjugation) such that

q → qQ = q0 − q1i − q2j − q3k.

In a (right) n-dimensional vector space Qn over Q, every linear operator is associated in
a standard way with an n× n matrix acting on the left [5].

In analogy with the case of complex group representations, one can introduce the concepts
of unitarity, Hermiticity and so on. Moreover, ifG is a finite (or a compact) group, reducibility
implies complete reducibility even in the case of unitary Q-representations D(G), and every
Q-representation is equivalent to a unitary one [6, 7].

We have shown elsewhere [8] that all Q-irreps D(G) of a finite (or compact) group G fall
into three classes (generalized Frobenius–Schur, or FS, classification): potentially real or of
type R (i.e. a basis exists in whichD is real), potentially complex or of type C (i.e. a basis exists
in which it has a complex but never real form), (purely) quaternionic or of type Q (i.e. in no basis
does it have a complex form). Indeed, they can all be obtained from the irreducible complex
group representations (C-irreps), in the sense that anyC-irrep of class +1 or 0, according to the
standard FS classification, is itself a Q-irrep of type R or C, respectively, while it reduces [6]
to two equivalent Q-irreps of type Q when it is of class −1 (or ‘pseudeoreal’), and no further
Q-irrep exists in addition to those generated (in the above sense) by the C-irreps.

Moreover, on the basis of some general theorems on Q-irreps [6, 8] we studied the
representationsD(H) of all the minimal extensionsG′ = G+aG of a finite (or compact) group
G by a linear operator a, and classified them into three types (generalized Wigner classification)
[4], according to the properties of the Q-irrep �(G) from which they come:

I D(G) = �(G), i.e. the restriction D(G) of D to the subgroup G is irreducible;
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II D(G) is reducible and has the form

D(G) =
(
�(G) 0

0 �̄(G)

)
D(a) =

(
0 �

(
a2

)
1 0

)
where �̄(g) ≡ �

(
a−1ga

)
is a Q-irrep of G of the same FS class as �, but inequivalent

to it;
III D(G) is reducible and has the above form, with � equivalent to �̄ (� ∼= �̄).

Crossing the generalized Wigner and Frobenius–Schur classifications, ten different cases
arise, according to the FS classes of �(G) and D(G′), but only five of them can be associated
with factorizable groups. (We recall that a magnetic group G′ = G + aG is said to be
factorizable if and only if an element t ∈ aG exists which commutes with all elements in G).
We denoted every case by a couple of letters, for instance, C/R, to point out that in this case
‘D(G′) is of type C ( or D(G′) ∼ C) and D(G) ∼ R’.

Finally, we recall that a generalized Schur’s lemma [3, 4] holds forQ-irreps, which asserts
that any linear operator commuting with a given Q-irrep D has the form T = q1, where
q ∈ R,C,Q when D is of type Q,C,R, respectively (in the latter two cases the form of T
refers to the basis in which D has a complex or a real form, respectively).

3. Q-irreps of the symmetry groups containing t

Let us consider the Q-irreps of a group G′ obtained by extending a given (finite or compact)
groupG of geometrical symmetries by the time-reversal operator t , which is a linear operator in
QQM and commutes with all spatial symmetries (hence, the extended groupG′ is a factorizable
group [4]).

Let us then consider firstly a fermionic system, and recall that in such a case D(t2) = 1;
whenever �(G) ∼ R,C or Q, only the cases R/R,C/C and Q/Q, respectively, can occur.
By the condition [�(G),D(t)] = 0, using the generalization of Schur’s lemma, the unitarity
of the representations and the constraint D(G′) ∼ R,C or Q we easily obtain in all cases

D(G) = �(G) D(t) = ±1 (1)

and the two Q-irreps corresponding to the ± sign will be inequivalent.
It must be stressed, however, that a representation having the previous form cannot

correspond to a symmetry group. Indeed, just by definition of geometrical symmetry, the
elements of G must commute with a Hamiltonian operator, which in turn must anticommute
with the time-reversal operator [3, 4]. In the cases R/R,C/C,Q/Q, all anti-Hermitian
operators commuting withD(G) assume the form (h1i+h2j+h3k)1, h1i1 and h01, respectively,
where hl ∈ R (l = 0, 1, 2, 3), so that they all commute with the time-reversal operatorD(t) (in
the former two cases, these forms refer to the bases in whichD(G) has a real or complex form,
respectively); in other words, no non-zero Hamiltonian can be associated with our system.
Hence, reducible representations must be taken into account to describe G′ and the simplest
ones are given by a sum of two representations of the form (1), which must be chosen as
necessarily inequivalent

D′(G) =
(
�(G) 0

0 �(G)

)
D′(t) =

(
1 0
0 −1

)
. (2)

In order to obtain the proper commutation relations withD′(G),H must have the following
form in the case R/R:

H =
(

0 (h + h1i + h2j + h3k)1
(−h + h1i + h2j + h3k)1 0

)
(3)
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where h, hl ∈ R (l = 1, 2, 3), and a q ∈ Q always exists such that

qHq−1 =
(

0 (h + h′i)1
(−h + h′i)1 0

)
(4)

where h′2 = h2
1 + h2

2 + h2
3.

Analogously one obtains for the case C/C

H =
(

0 α1
−α∗1 0

)
α ∈ C (5)

and for the case Q/Q

H =
(

0 h1
−h1 0

)
h ∈ R. (6)

Let us now consider a bosonic system and recall that in this case D(t2) = −1 (i.e. t is
anti-Hermitian). The corresponding representations can be obtained by the same techniques
adopted in [9] and are given by

D(G) = �(G) D(t) = i1 (case C/R) (7)

D(G) = �(G) D(t) = ±i1 (case C/C) (8)

D(G) =
(
�(G) 0

0 �(G)

)
D(t) =

(
0 −1
1 0

)
(case C/2Q). (9)

By the same arguments we expressed above for fermionic systems, also in some bosonic
cases, reducible representations must be used. Indeed, in the cases C/C and C/2Q, in the
bases in which D(G) assumes a complex form, all anti-Hermitian operators commuting with
D(G) are real multiples of i1, so that they all mutually commute (whereas in the caseC/R, any
operator of the formH = jα1, α ∈ C, anticommutes with t and then can be chosen to represent
the Hamiltonian). Therefore, except for the case � ∼ R, reducible representations arise to
describe G′, and the simplest ones are given, when � ∼ C, by a sum of two inequivalent
representations of the form (8):

D′(G) =
(
�(G) 0

0 �(G)

)
D′(t) = i

(
1 0
0 −1

)
(10)

which satisfies the proper commutation relations with the anti-Hermitian operator

H =
(

0 α1
−α∗1 0

)
α ∈ C (11)

and by a sum of two equivalent representations of the previous form (9) when � ∼ Q:

D′(G) =




�(G) 0 0 0
0 �(G) 0 0
0 0 �(G) 0
0 0 0 �(G)


 D′(t) =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 . (12)

In this case H must have the following form:

H =




0 0 c1 d1
0 0 d1 −c1

−c1 −d1 0 0
−d1 c1 0 0


 c, d ∈ R. (13)
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4. The t-violation in QQM

Suppose that the dynamics at the quaternionic level are governed by a quaternionic Schrödinger
equation with Hamiltonian H̃ , and that the asymptotic state dynamics is described by an
effective Hamiltonian H which is time-reversal conserving [3], where the possible forms of
H are given in the previous section.

According to this scenario, we can proceed in the study of the cases listed above,
considering the Hamiltonian H̃ which admits the same geometrical symmetry group G as
H but violates time reversal. We can obtain H̃ by using the same technique developed in
the previous section to determine H , but simply omitting the condition {t, H̃ } = 0, which
would imply a time-reversal symmetry. In doing so we obtain the explicit form of H̃ for each
case, corresponding to fermionic and bosonic systems. In particular, for the fermionic cases
R/R,C/C,Q/Q we have, respectively,

H̃ = H +

(
(v1i + v2j + v3k)1 0

0 (u1i + u2j + u3k)1

)
(14)

H̃ = H +

(
vi1 0
0 ui1

)
(15)

and

H̃ =
(

0 h1
−h1 0

)
= H. (16)

(All the hs, us and vs above are real parameters.)
We immediately remark that if a fermionic system is invariant by a geometrical symmetry

group G, its states associated with a Q-irrep D(G) of type Q cannot violate time reversal. On
the contrary, in all other cases a non-vanishing, t-violating interacting potential Vt = H̃ −H
can exist.

By analysing analogously the bosonic cases C/R,C/C,C/2Q, we obtain

H̃ = H + vi1 (17)

H̃ = H +

(
vi1 0
0 ui1

)
(18)

and

H̃ =




0 b1 c1 d1
−b1 0 e1 f 1
−c1 −e1 0 g1
−d1 −f 1 −g1 0


 (19)

respectively, where u, v, b, c, d, e, f, g ∈ R.
We note that in equations (14)–(18) the residual term Vt = H̃ − H commutes with t ,

as one can easily verify. In the case of equation (19), by a suitable choice of the parameters
(e = −d, f = c), we obtain H̃ = H + Vt , where again [Vt , t] = 0, so that in all cases a
potential Vt can exist which shares with t a common basis of eigenvectors.

To conclude this section, we note that in all the above cases the subspace associated with an
H -degenerate eigenvalue decomposes into two subspaces belonging to different eigenvalues
when the term Vt is switched on and the full Hamiltonian H̃ is taken into account.

The eigenvalues and the eigenvectors of the full Hamiltonian H̃ can be calculated by
resorting to the methods outlined in [10], and using (if necessary) a software package of
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symbolic computation. For instance, one obtains in the case of equation (15) (see also
equation (4)) that the eigenvalues of the complex matrix H are ±i

√
h2 + h′2 (recall that in

QQM only their modulus is relevant, due to the possibility of a quaternionic rephasing of the
eigenvectors [3]), so that a degeneracy arises, while the (distinct) eigenvalues of H̃ are

i
u + v

2
± i

√
h2 + h′2 +

1

4
(u− v)2.

Then if the invariance group of the Hamiltonian is reduced by the introduction of an
additional interaction which does not respect the full symmetry, the new energy levels are
classified by the representations of the reduced group, according to the standard group
representations theory [11].

5. The complete group and parity violation

The techniques and the concepts of the previous section can be extended to explore parity
violation (equivalently, t-violation) in a relativistic physical system.

To do this we can consider the quaternionic complete symmetry group of a massive
physical system that we studied in a previous paper [9], i.e. the group obtained by extending
the connected Poincaré group and the internal symmetry group G by means of the CPT and
the generalized parity operators (� and P , respectively; more precisely, we use�0 = �e−iπJy

in place of �, so that �2
0 = −1 both for fermionic as for bosonic systems [9]).

The particle multiplets (i.e. the Q-representations of the complete group) have been
obtained and classified in 14 cases; we consider here only the six cases in which all internal
symmetry operators commute with P (and hence with t).

Following the same methods as in section 4, we obtain that only in two cases can a t-
violating Hamiltonian H̃ exist; we denote them by the symbols Q//R (‘D(G) ∼ R, while
the double extension D(G′) ∼ Q’) and C//2C (‘D(G) is the direct sum of two equivalent
Q-irreps of type C, and D(G′) ∼ C’). Their explicit forms in the internal variables space
are, for the case Q//R (recall that �0,P and all operators in G are diagonal in the spin and
momentum spaces [9]):

D(G) = �(G) D(�0) = i1 D(P) = j eiθ1 (20)

for some θ ∈ R, and the Hamiltonians H and H̃ are given by

H = jh1eiθ1 H̃ = jα1 (h1 ∈ R, α ∈ C).

Moreover, a potential term Vt = H̃ − H can exist which anticommutes with P (hence, it
commutes with t (see section 4)):

Vt = kh2eiθ1 h2 ∈ R.

Analogously we have for the case C//2C

D(G) =
(
�(G) 0

0 �(G)

)
D(�0) =

(
i1 0
0 −i1

)
D(P) =

(
0 eiθ1
1 0

)

H = ih

(
0 eiθ/21

e−iθ/21 0

)
H̃ =

(
0 α1

−α∗1 0

)

Vt = h′
(

0 eiθ/21
−e−iθ/21 0

) (21)

where h, h′ ∈ R, α ∈ C.
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When the generalized parity symmetry is violated, in contrast to the cases analysed in
section 4, a direct calculation of energy levels shows that in the cases considered in the present
section the additional term Vt implies a mere shift of the levels but no splitting.

For a more detailed description of all cases, see [12].

6. Two-level systems

We have explicitly shown in section 4 the possible forms of the Hamiltonians which preserve
(or not) the time-reversal symmetry; we emphasize that the above results arise from a purely
group-theoretical approach and, while some of these representations assume a complex form,
we derived all of them in a genuinely quaternionic approach (as, we assumed the linearity of
the t operator).

The knowledge of the quaternionic Hamiltonian operator allows one to exactly determine
the evolution of a state vector and to investigate, for instance, what happens when a perturbation
Vt (which violates t-symmetry) is added to a HamiltonianH which preserves the time reversal.
(A very similar problem were discussed by Adler [13, 14], resorting to perturbation techniques,
in some papers concerning t-violation in the K-meson decays.)

We will show in this section that some amusing features arise in doing so. We choose
as our ‘laboratory’ a two-level system, which in many physical situations can describe, to a
good approximation, a more involved system. We avoid for the moment discussion of the
more complicated case given by equation (19) and the simpler case given by equation (17).
Moreover, we will restrict ourselves to a genuinely quaternionic case, because the calculations
in the cases of equations (15) and (18), in which the Hamiltonians are complex, follow in an
easy manner from the analogous discussions in CQM.

Let us consider then the two-dimensional case

H =
(

0 h + ih′

−h + ih′ 0

)
Vt = j

(
v 0
0 v

)
H̃ = H + Vt (22)

that can be obtained from equation (14) by a suitable choice of the parameters and imposing
�(G) ≡ 1.

The unperturbed complex Hamiltonian H admits the two eigenvectors∣∣ψ ′
1

〉 = 1√
2

(
i eiη

1

) ∣∣ψ ′
2

〉 = 1√
2

( −i eiη

1

)
(23)

where tan η = h′
h

, belonging to the eigenvalues −iε = −i
√
h2 + h′2 and iε, respectively.

By rephasing them (in particular, the first one), one obtains the two orthogonal eigenvectors

|ψ1〉 = 1√
2

(
i eiη

1

)
j = ∣∣ψ ′

1

〉
j |ψ2〉 = 1√

2

( −i eiη

1

)
= ∣∣ψ ′

2

〉
(24)

both belonging to the eigenvalue iε.
The degeneracy of ε can be removed by adding the perturbation (time-independent) term

Vt which, as we remarked above, commutes with t so that in QQM it violates t-symmetry.
One obtains in this case that the eigenvalues and the (orthogonal) eigenvectors of H̃ ,

H̃ |)±〉 = |)±〉 iE±
are given by

E± =
√
h′2 + (h± v)2 (25)

|)±〉 = 1

2

( ±1 − j eiφ±

±eiφ± + j

)
(26)
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where tan φ± = h±v
h′ . The evolution operator U = e−H̃ tcan be obtained, in the easiest way, by

introducing the matrix S which diagonalizes H̃ :

SH̃S−1 = i

(
E+ 0
0 E−

)
and which is given by [10]

S =
(
)+,1 )−,1
)+,2 )−,2

)−1

where we have denoted by )±,l the lth component of |)±〉.
Then,

U ≡ e−H̃ t = S−1

(
e−iE+t 0

0 e−iE−t

)
S

= 1

2




cosE+t + cosE−t

−k(eiφ+ sinE+t − eiφ− sinE−t)

−j (cosE+t − cosE−t)

−i
(
e−iφ+ sinE+t + e−iφ− sinE−t

)
j (cosE+t − cosE−t)

−i
(
eiφ+ sinE+t + eiφ− sinE−t

) cosE+t + cosE−t

+k
(
e−iφ+ sinE+t − e−iφ− sinE−t

)


.

(27)

The matrix elements 〈ψl| e−H̃ t |ψm〉, or briefly U ′
lm, are

U ′
11 = cosE+t + cosE−t − i(sin(φ+ + η) sinE+t + sin(φ− + η) sinE−t)

−k e−iη(cos(φ+ + η) sinE+t − cos(φ− + η) sinE−t) (28)

U ′
12 = −i eiη(cosE+t − cosE−t)− eiη(sin(φ+ + η) sinE+t − sin(φ− + η) sinE−t)

+j (cos(φ+ + η) sinE+t + cos(φ− + η) sinE−t) (29)

U ′
21 = i e−iη(cosE+t − cosE−t) + e−iη(sin(φ+ + η) sinE+t − sin(φ− + η) sinE−t)

+j (cos(φ+ + η) sinE+t + cos(φ− + η) sinE−t) (30)

U ′
22 = cosE+t + cosE−t − i(sin(φ+ + η) sinE+t + sin(φ− + η) sinE−t)

+k eiη(cos(φ+ + η) sinE+t − cos(φ− + η) sinE−t) (31)

where

cos(φ± + η) = ∓ h′v
εE±

. (32)

Let us now consider a state vector which coincides, at t = 0, with an eigenvector of H ,
say |ψ1〉, and compute the probability of finding the system in the state |ψ2〉 at time t . By
using the previous results, we easily obtain

P12(t) = ∣∣ 〈ψ1| e−H̃ t |ψ2〉
∣∣2

= 1
2 {1 + cos (φ+ + φ− + 2η) sinE+t sinE−t − cosE+t cosE−t} = P21(t) (33)

and the above expression differs from the familiar Rabi formula [15] for CQM by the v-
dependent factor

cos (φ+ + φ− + 2η) = − v2
(
h′2 − h2

)
+

(
h2 + h′2)2

(
h2 + h′2) √(

h2 + h′2 + v2
)2 − 4h2v2

. (34)



t-violation and quaternionic state oscillations 7835

Analogous calculations yield

P11(t) ≡ ∣∣ 〈ψ1| e−H̃ t |ψ2〉
∣∣2 = P22(t) = 1 − P12(t). (35)

We note that the above probabilities do not depend on the sign of the time; this feature
occurs whenever (in a two-level system) a transition probability between orthogonal states is
considered, and disappears when a different choice of states is made (see section 7).

A deeper investigation can be performed by considering the time evolution of a state vector.
Let us choose, as an example, a complex superposition of the eigenstates of the Hamiltonian
H , which constitutes the most general eigenvector of H belonging to the eigenvalue iε, as one
can easily verify. Let

|ω(0)〉 = |ψ1〉α + |ψ2〉β
(where |α|2 + |β|2 = 1, α, β ∈ C) be such a vector. Then,

|ω(t)〉 = e−H̃ t |ω(0)〉 = e−H̃ t |ψ1〉α + e−H̃ t |ψ2〉β
= |ψ1〉

[
U ′

11α + U ′
12β

]
+ |ψ2〉

[
U ′

21α + U ′
22β

]
.

Hence, a quaternionic component of |ω(t)〉 arises in time; moreover, recalling the form of
theU ′

lms (see equations (28)–(31)) it is easy to single out the complex parts of the coefficients in
the above expansion, thus obtaining the ‘complex’ component |ω(t)〉C of |ω(t)〉. A somewhat
cumbersome calculation yields the norm of |ω(t)〉C , that is

‖|ω(t)〉C‖2 = 1 − 1
2

{
(1 − a) cos2(φ+ + η) sin2 E+t + (1 + a) cos2(φ− + η) sin2 E−t

}
(36)

where a = 2 Im(αβ∗e−iη) (note that 0 � a � 1).
Thus, we can conclude that the purely quaternionic component of |ω(t)〉 oscillates in time

and does not vanish asymptotically.

7. Oscillations of the t-eigenstates

Let us now consider a different example, i.e. the oscillations of the eigenstates of Vt , which
are simultaneously eigenstates of the time-reversal observable t (see equation (2)).

We denote by |χ±〉 the eigenstates of the degenerate Hamiltonian Vt , which are

|χ+〉 = 1√
2

(
i + j

0

)
|χ−〉 = 1√

2

(
0

i + j

)
(37)

both belonging to the eigenvalue iv.
Let us then consider the time evolution of a state vector which coincides, at t = 0, with |χ+〉,

and compute the probability P ′
12(t) of finding the system in the state |χ−〉 at time t . Recalling

the form of the evolution operator (see equation (27)), by a straightforward calculation one
obtains

P ′
12(t) =

∣∣∣〈χ+| e−H̃ t |χ−〉
∣∣∣2

= 1
2 {1 + cosE+t cosE−t − cos(φ+ − φ−) sinE+t sinE−t} = P ′

21(t). (38)

Analogously,

P ′
11(t) = P ′

22(t) = 1 − P ′
12(t). (39)
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We again obtain a formula which is very similar to equation (33) and which differs from
Rabi’s formula by the term

cos(φ+ − φ−) = h′2 + h2 − v2√(
h2 + h′2 + v2

)2 − 4h2v2
. (40)

In the same manner we can finally calculate the transition probability between the states
|χ+〉 and |ψ1〉:
|〈ψ1|U |χ+〉|2 = 1

2 {1 + cos(φ+ + η) sinE+t cosE−t + cos(φ− + η) sinE−t cosE+t}. (41)

(Note that in this last case the probability changes when t → −t .)

8. The time-reversal observable

Since the time-inversion operator is associated in quaternion quantum mechanics with a
Hermitian or an anti-Hermitian operator, an observable can always be associated with it in
our theory [3], which inherits all the well known properties of observables. Then, it can be
useful to extend and apply some familiar concepts explicitly to t .

8.1. Fermionic systems

We remember that for a fermionic system one has

t2 = 1 t† = t. (42)

The operators

P± = 1
2 (1 ± t) (43)

project the states of a quaternionic Hilbert space into two subspaces associated with the
eigenvalues +1 and −1, respectively, of t .

Indeed, by the previous definition it is easy to check that

P 2
± = P± = P

†
± (44)

P+P− = P−P+ = 0 (45)

P+ + P− = 1 (46)

and

tP± = ±P±. (47)

Then, for any state |χ〉,
|χ〉 = (P+ + P−)|χ〉 = P+|χ〉 + P−|χ〉 = |χ+〉 + |χ−〉 (48)

and the vectors |χ±〉 = P± |χ〉 satisfy

t |χ±〉 = ±|χ±〉. (49)
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8.2. Bosonic systems

For a bosonic system we have, in contrast with the previous case,

t2 = −1 t† = −t (50)

then t is anti-Hermitian and admits the spectral representation [3]

t =
∑
τ

|τ 〉 τ i 〈τ | τ = ±1. (51)

Let us pose

I =
∑
τ

|τ 〉i 〈τ | (52)

then we have trivially

[t, I ] = 0 (53)

and tI is Hermitian:

(tI )2 = −t2 = 1. (54)

The operators

P ′
± = 1

2 (1 ± I t) (55)

satisfy the same algebra asP± (see equations (44)–(46)) and project the states of a quaternionic
Hilbert space into two subspaces associated, respectively, with the eigenvalues +1 and −1 of
I t :

I tP ′
±|χ〉 = ±P ′

±|χ〉. (56)

8.3. Time-reversal selection rules

Let us consider a fermionic system.
We say that an observable Oe is even under time reversal if

tOe = Oet (57)

while an observable Oo is odd if

tOo = −Oot. (58)

By using equation (42), then equations (57) and (58), respectively, become

tOet = Oe (59)

tOot = −Oo (60)

and we have

〈χ±|Oe|χ∓〉 = 〈χ±|tOet |χ∓〉 = −〈χ±|Oe|χ∓〉 = 0 (61)

〈χ±|Oo|χ±〉 = −〈χ±|tOot |χ±〉 = −〈χ±|Oo|χ±〉 = 0 (62)

which constitute a pair of ‘time-reversal selection rules’ for a fermionic system.
For a bosonic system we say that an observable Oe is even under time reversal if

I tOeI t = Oe (63)

while Oo is odd if

I tOoI t = −Oo. (64)

By using the results of the previous subsection, we easily obtain for bosonic systems a pair
of time-reversal selection rules which formally coincide with the previous ones for fermionic
systems.
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